skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kenyon, Lindsey M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Using numerical models, we compute the evolution of the mantle flow field and the crystal preferred orientation (CPO) of mineral aggregates in the mantle wedge of generic subduction systems from their nascent to mature stage and investigate shear wave splitting (SWS) through the forearc mantle wedge corner and overriding crust. Upon subduction initiation, the maximum depth of slab‐mantle decoupling (MDD) is relatively shallow (∼20 km depth), resulting in mantle flow and CPO development in the wedge corner. As subduction continues, the MDD deepens, the wedge corner cools and stagnates, and the olivine CPO becomes frozen‐in. In the cool wedge corner, antigorite can form if water is available. In non‐deforming mantle, antigorite CPO develops relative to the host olivine CPO through topotactic growth. We calculate splitting parameters of synthetic local S waves based on the model‐predicted A‐ and B‐type olivine CPOs and topotactically grown antigorite CPO that replaces A‐type olivine CPO in the wedge corner. The fast direction is trench‐normal for A‐type olivine and antigorite CPOs and trench‐parallel for B‐type. When the delay times are long enough (>0.1 s), we find them positively correlated with the thickness of the mantle wedge corner. In NE Japan, where the results of detailed analyses on the spatial variation of the SWS parameters are available, such correlation is not observationally reported. However, the addition of an anisotropic overriding crust provides delay times (∼0.1 s) and trench‐normal fast directions that are consistent with the local SWS observations. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. This package of codes uses a 3-D velocity flow field to calculate crystal preferred orientation (CPO) using a modified version of D-Rex (Kaminiski et al., 2004), and then calculates local shear wave splitting (SWS) parameters using MSAT (Walker & Wookey, 2012). It includes the codes needed for the plotting D-Rex output (GMT5, Wessel et al., 2013), the scripts and general workflow to process the elastic tensors from D-Rex before using them in the SWS code, and multiple README files containing more details on each code. The mantle wedge flow from a 45 degree obliquity subduction zone is provided as an example. 
    more » « less